Economics 201b Spring 2010 Problem Set 3 Due Thursday April 8

Unless otherwise specified, all equilibria are understood to mean without transfers.

- 1. Consider a Robinson Crusoe economy with a linear technology $f(x_1) = \alpha x_1$ and $\overline{\mu}$ are preferences: $U(x_1, x_2) = x_1 + \beta x_2$ where $0 < \alpha, \beta < \infty$. Let the endowment be $\omega = (L, 0)$. Give a complete case-by-case analytic characterization of all equilibria. For each case, draw a picture.
- 2. In an Arrow-Debreu economy with strongly monotone preferences, consider a 4-tuple (p, x, y, T) where T is an income transfer and $x_i \in D_i(p, y, T)$ for all I consumers. Suppose all but one market clear without loss of generality, assume the first L-1 markets clear, then show explicitly that, in fact, all markets clear. When writing your solution use the standard notation (e.g. $l, i, x_i, y_j, \theta_{ij}$) for Arrow-Debreu economies found in the notes for lecture 4. Do not assume it is a pure exchange economy.
- 3. Consider a two-consumer, one-firm Arrow-Debreu economy. The technology of the firm is $Y = \{(y_1, y_2) | y_1 \leq 0, y_2 = e \log(1 y_1)\}$. The endowments are $\omega_1 = (e, 0)$ and $\omega_2 = (e^2, 0)$, and the utilities are $U_1(x_{11}, x_{21}) = \frac{\log(x_{11})}{e} + x_{21} \frac{1}{e}$ and $U_2(x_{12}, x_{22}) = \log(x_{12}) + x_{22} 2$. Let θ_1 and θ_2 be the two agent's shares of the firm's profit.
 - (a) Give an analytic characterization of all equilibria. Show your work in detail; in particular find a *simple, clean* expression for equilibrium labor.
 - (b) Suppose that the agents bargain for their shares θ_i of the firm's profits. What is the Nash bargaining solution for the shares? Explain. (Recall, the Nash Bargaining solution is the split of shares (θ_1^*, θ_2^*) that solves the following maximization problem

$$\underset{\theta_1,\theta_2}{\operatorname{argmax}} \quad (U_1^{\theta_1} - \underline{U_1})(U_2^{\theta_2} - \underline{U_2})$$

where $U_i^{\theta_i}$ is agent *i*'s equilibrium utility when the shares are (θ_1, θ_2) , and $\underline{U_i}$ is agent *i*'s utility when there is no access to the firm's technology.)

- 4. Consider a two-person, two-good exchange economy with the following nonconvex preferences: $U_i(x_{1i}, x_{2i}) = \max\{x_{1i}, x_{2i}\}$ for i = 1, 2. Suppose the social endowment is $\bar{\omega} = (1, \gamma)$ with $\gamma > 0$.
 - (a) Give a careful analytic characterization of all *exact* Pareto Optimal allocations. Answer will depend on γ . Draw pictures demonstrating the different possibilities.
 - (b) Are there any values of γ for which the Second Welfare Theorem fails? Prove your answer.