Economics 201b
Spring 2010
Problem Set 3
Due Thursday April 8
Unless otherwise specified, all equilibria are understood to mean without transfers.

1. Consider a Robinson Crusoe economy with a linear technology $f\left(x_{1}\right)=\alpha x_{1}$ and $\overline{=}$ ences: $U\left(x_{1}, x_{2}\right)=x_{1}+\beta x_{2}$ where $0<\alpha, \beta<\infty$. Let the endowment be $\omega=(L, 0)$. Give a complete case-by-case analytic characterization of all equilibria. For each case, draw a picture.
2. In an Arrow-Debreu economy with strongly monotone preferences, consider a 4 -tuple (p, x, y, T) where T is an income transfer and $x_{i} \in D_{i}(p, y, T)$ for all I consumers. Suppose all but one market clear - without loss of generality, assume the first $L-1$ markets clear, then show explicitly that, in fact, all markets clear. When writing your solution use the standard notation (e.g. l, i, x_{i}, $y_{j}, \theta_{i j}$) for Arrow-Debreu economies found in the notes for lecture 4. Do not assume it is a pure exchange economy.
3. Consider a two-consumer, one-firm Arrow-Debreu economy. The technology of the firm is $Y=$ $\left\{\left(y_{1}, y_{2}\right) \mid y_{1} \leq 0, y_{2}=e \log \left(1-y_{1}\right)\right\}$. The endowments are $\omega_{1}=(e, 0)$ and $\omega_{2}=\left(e^{2}, 0\right)$, and the utilities are $U_{1}\left(x_{11}, x_{21}\right)=\frac{\log \left(x_{11}\right)}{e}+x_{21}-\frac{1}{e}$ and $U_{2}\left(x_{12}, x_{22}\right)=\log \left(x_{12}\right)+x_{22}-2$. Let θ_{1} and θ_{2} be the two agent's shares of the firm's profit.
(a) Give an analytic characterization of all equilibria. Show your work in detail; in particular find a simple, clean expression for equilibrium labor.
(b) Suppose that the agents bargain for their shares θ_{i} of the firm's profits. What is the Nash bargaining solution for the shares? Explain. (Recall, the Nash Bargaining solution is the split of shares - $\left(\theta_{1}^{*}, \theta_{2}^{*}\right)$ - that solves the following maximization problem

$$
\underset{\theta_{1}, \theta_{2}}{\operatorname{argmax}} \quad\left(U_{1}^{\theta_{1}}-\underline{U_{1}}\right)\left(U_{2}^{\theta_{2}}-\underline{U_{2}}\right)
$$

where $U_{i}^{\theta_{i}}$ is agent i 's equilibrium utility when the shares are $\left(\theta_{1}, \theta_{2}\right)$, and $\underline{U_{i}}$ is agent i 's utility when there is no access to the firm's technology.)
4. Consider a two-person, two-good exchange economy with the following nonconvex preferences: $U_{i}\left(x_{1 i}, x_{2 i}\right)=\max \left\{x_{1 i}, x_{2 i}\right\}$ for $i=1,2$. Suppose the social endowment is $\bar{\omega}=(1, \gamma)$ with $\gamma>0$.
(a) Give a careful analytic characterization of all exact Pareto Optimal allocations. Answer will depend on γ. Draw pictures demonstrating the different possibilities.
(b) Are there any values of γ for which the Second Welfare Theorem fails? Prove your answer.

